II B.Tech - I Semester – Regular Examinations - FEBRUARY 2022

DIGITAL LOGIC DESIGN (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours	Max. Marks: 70
Note: 1. This paper contains questions fro	m 5 units of Syllabus. Each unit carries

14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

<u>UNIT – I</u>

1.	a)	What are the canonical and standard forms of a Boolean	
		function? Explain with an example.	7 M
	b)	Solve the following	
		i) $(57.125)_{10} = ()_8$	
		ii) $(30.6875)_{10} = ()_2$	
		iii) $(137.75)_8 = ()_{10}$	7 M
		OR	
2.	a)	Reduce the following Boolean expressions.	
		i) $AB+A(B+C)+B(B+C)$	
		ii) $ABEF + AB(EF)' + (AB)'EF$.	
		iii) A'B'+A'BC'+A'BCD+A'BC'D'E.	7 M
	b)	Perform the given subtraction using 1's and	
		2's complement methods: $(10110)_2 - (1101101)_2$.	7 M

<u>UNIT – II</u>

3. a) Obtain the simplified expression in sum of products and product of sums form using K-map method. $F(A,B,C,D,E) = \sum (0,1,4,5,9,16,17,21,25,29)$

	b)	Obtain minimal POS expression for the Boolean	
		function.	
		$F(A,B,C,D) = \Pi(0,1,2,3,4,6,9,10) + d(7,11,13,15).$	
		Draw the circuit using 2 input NAND gates.	7 M
		OR	
4.	a)	Draw NOR logic diagram that implements the	
		following function.	
		$F(A,B,C,D) = \Pi(0,1,2,3,4,8,9,12)$	7 M

b) Realize logic gates AND, OR, NOR using NAND gate. 7 M

<u>UNIT-III</u>

5.	a)	Define decoder. Construct 3x8 decoder using logic		
		gates.	7 M	
	b)	Realize the function		
		$F(A,B,C,D) = \sum (1,2,3,4,6,7,8,10,12,14,15)$ using		
		i) 8:1 MUX ii) 4:1 MUX	7 M	
	OR			
6.	a)	Design 4-bit parallel adder circuit.	7 M	
	b)	Define multiplexer. Construct 4-to-1 multiplexer using		
		logic gates.	7 M	

$\underline{UNIT} - IV$

7.	a)	Explain the operation of 4-bit Ring counter with the	
		help of sequential circuit and timing diagram.	7 M
	b)	Design and implement Mod-9 Synchronous Counter	
		using JK-Flip flop and construct the timing diagram.	7 M
		OR	

8.	a)	Design a Mod -11 Ripple counter using T flip flops and	
		explain its operation with the help of the state diagram.	7 M
	b)	Implement 4-bit Bi-Directional shift register and	
		explain its operation.	7 M
		<u>UNIT – V</u>	
9.	a)	With simple examples explain the differences between	
		Mealy and Moore type machines.	7 M
	b)	Describe the design procedure for synchronous	
		sequential circuits.	7 M
		OR	
10.	a)	State the objectives of FSM and Explain Moore state	
		machine with example.	7 M
	b)	Obtain the state table and state diagram for a sequence	
		detector to recognize the occurrence of sequence bits	
		110 & 001.	7 M