II B.Tech - I Semester - Regular Examinations - FEBRUARY 2022

DIGITAL LOGIC DESIGN (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1. a) What are the canonical and standard forms of a Boolean function? Explain with an example.
b) Solve the following
i) $(57.125)_{10}=()_{8}$
ii) $(30.6875)_{10}=()_{2}$
iii) $(137.75)_{8}=()_{10}$
2. a) Reduce the following Boolean expressions.
i) $\mathrm{AB}+\mathrm{A}(\mathrm{B}+\mathrm{C})+\mathrm{B}(\mathrm{B}+\mathrm{C})$
ii) $\mathrm{ABEF}+\mathrm{AB}(\mathrm{EF})^{\prime}+(\mathrm{AB})^{\prime} \mathrm{EF}$.
iii) $\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$.
b) Perform the given subtraction using 1 's and 2's complement methods: $(10110)_{2}-(1101101)_{2}$. 7 M

UNIT - II

3. a) Obtain the simplified expression in sum of products and product of sums form using K-map method.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\sum(0,1,4,5,9,16,17,21,25,29)$
b) Obtain minimal POS expression for the Boolean function.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(0,1,2,3,4,6,9,10)+\mathrm{d}(7,11,13,15)$.
Draw the circuit using 2 input NAND gates. OR
4. a) Draw NOR logic diagram that implements the following function.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(0,1,2,3,4,8,9,12)$
b) Realize logic gates AND, OR, NOR using NAND gate.

UNIT-III

5. a) Define decoder. Construct 3×8 decoder using logic gates.
b) Realize the function
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,2,3,4,6,7,8,10,12,14,15)$ using
i) $8: 1 \mathrm{MUX}$
ii) 4:1 MUX

OR
6. a) Design 4-bit parallel adder circuit.
b) Define multiplexer. Construct 4-to-1 multiplexer using logic gates.

UNIT - IV

7. a) Explain the operation of 4-bit Ring counter with the help of sequential circuit and timing diagram.
b) Design and implement Mod-9 Synchronous Counter using JK-Flip flop and construct the timing diagram.
8. a) Design a Mod - 11 Ripple counter using T flip flops and explain its operation with the help of the state diagram. 7 M
b) Implement 4-bit Bi-Directional shift register and explain its operation. 7 M
UNIT - V
9. a) With simple examples explain the differences between Mealy and Moore type machines. 7 M
b) Describe the design procedure for synchronous sequential circuits. 7 M
OR
10. a) State the objectives of FSM and Explain Moore state machine with example. 7 M
b) Obtain the state table and state diagram for a sequence detector to recognize the occurrence of sequence bits $110 \& 001$. 7 M
